Utilisation de modèles informatiques pour surmonter les lacunes des données de terrain de phénotypage à haut débit.
La température est l’un des facteurs les plus importants qui déterminent la croissance, le développement et le rendement des plantes. Des données précises sur les réponses des cultures à la température sont essentielles pour prédire les impacts potentiels d’un futur climat plus chaud sur la production agricole.
Le phénotypage sur le terrain à haut débit représente la capacité de détecter de manière non destructive et à distance la croissance des cultures à haut débit pour caractériser avec précision des centaines de génotypes dans des conditions de terrain. Les vastes quantités de données d’observations objectives et répétées qui en résultent peuvent être utilisées pour quantifier la réponse de croissance spécifique au génotype à la température.
Pourtant, la capacité de déterminer l’adéquation des modèles de réponse spécifiques au génotype à partir de données dérivées du terrain est difficile, selon le Dr. Lukas Roth de l’Institut des sciences agricoles de l’ETH Zurich. « Les mesures sur le terrain sont notoirement « bruyantes » en raison des inhomogénéités de l’environnement et du sol et des erreurs de mesure. Par conséquent, nous ne connaissons jamais la « vérité » des données de terrain et ne sommes donc pas en mesure de juger si notre modèle prédit correctement la réponse de la croissance aux températures. »
Ainsi, dans un nouvel article publié dans en silicone plantes, Roth et ses collègues ont utilisé un modèle pour générer des données avec des distributions saisonnières des températures sur le terrain. Ils ont ensuite pu vérifier la précision d’une approche de modèle linéaire existante par rapport à un nouveau modèle asymptotique proposé pour extraire la réponse de croissance spécifique au génotype aux températures.
Premièrement, des données sur la hauteur des plantes ont été générées pour plusieurs génotypes de blé à l’aide d’une simulation basée sur la fonction de réponse de Wang-Engel. Le modèle de Wang-Engel simule le développement des cultures sur la base de la réponse non linéaire du développement des plantes à la température. Les génotypes ont caractérisé différentes réponses de croissance aux températures cardinales et au taux de croissance absolu maximum. La croissance saisonnière de la canopée a été simulée sur la base de cinq années de données de température. Les auteurs ont simulé des intervalles de mesure de 3, 7 et 14 jours pour déterminer quel intervalle de collecte de données était suffisant pour quantifier la réponse de croissance spécifique au génotype à la température.

Ensuite, ils ont comparé la capacité du modèle linéaire existant par rapport à un nouveau modèle asymptotique pour prédire les paramètres de réponse à la température à partir des données simulées.
« L’approche linéaire est largement utilisée dans notre domaine de recherche et promet une grande robustesse, mais plus nos données de phénotypage devenaient précises, plus nous voyions souvent des preuves d’une relation non linéaire », explique Roth.
Les auteurs ont constaté que le modèle asymptotique extrayait la température de base de la croissance et le taux de croissance absolu maximal avec une grande précision, alors que le modèle linéaire plus simple ne le faisait pas. De plus, le modèle asymptotique a fourni une estimation indirecte de la température optimale. Cependant, lors de l’inclusion des températures cardinales changeant de façon saisonnière au fur et à mesure que les plantes se développent, la précision de la prédiction du modèle asymptotique était fortement réduite.
En ce qui concerne la résolution d’échantillonnage à haut débit, les auteurs ont constaté que des intervalles de mesure d’environ quatre jours étaient suffisants pour extraire de manière fiable la température cardinale minimale et le taux de croissance absolu maximal. C’est une bonne nouvelle pour les moments où des mesures régulières ne sont pas possibles, par exemple dans de mauvaises conditions météorologiques et de longs week-ends.
LIRE L’ARTICLE:
Lukas Roth, Hans-Peter Piepho, Andreas Hund, Traitement des données Phenomics : Extraction des paramètres de la courbe dose-réponse à partir des cours de température à haute résolution et des mesures répétées de la hauteur du blé sur le terrain, in silico Plants, 2022 ; diac007, https://doi.org/10.1093/insilicoplants/diac007
Les données et le code source qui étayent les conclusions de cette étude sont librement disponibles dans le référentiel ETH GitLab à l’adresse https://gitlab.ethz.ch/crop_phenotyping/htfp_data_processing.
Lié
Gabriel Durant est un journaliste et écrivain français spécialisé dans la région Occitanie. Né dans la ville de Perpignan, Gabriel a toujours été passionné par l'histoire, la culture et la langue de la région. Après avoir étudié la littérature et le journalisme à la Sorbonne, il a commencé à écrire pour le site web Vent d'Autan, où il couvre un large éventail de sujets liés à l'Occitanie. En plus de son travail de journaliste, Gabriel est également un romancier accompli.
- Anémomètre numérique avec rétroéclairage LCD pour la vitesse du vent, mesure de la température du débit d'air, ventilateur USB avec tige extensible Max 30 cm + enregistreur de données5 conversion d'unité de vitesse de l'air: m/s, ft/m, mph, km/h, noeuds; 2 conversion d'unité de température d'air: ℃/℉ Indication de la vitesse de l'air à 12 niveaux - Vous n'avez pas besoin de faire une conversion compliquée de la valeur à l'échelle du vent. Avec rétroéclairage pour une lecture facile dans l'obscurité. Affichage de la vitesse globale de l'air à MIN/Max/AVG. Léger avec un petit volume, facile et pratique à utiliser.